
A SAT Attack on Killer Sudokus

Shuai Wang Aashish Venkatesh

University of Amsterdam, The Netherlands

Abstract

Killer sudoku is a special class of sudoku where the sum of some adjacent cells is specified. This
case study presents the first attempt using a SAT solver for killer sudoku problems. More specifi-
cally, we introduce an encoding from arithmetic constraints to propositional constraints. A qualitative
evaluation is presented regarding different cage sizes. In addition, the first opensource killer sudoku
database is developed.

1 Introduction

7

10

30

3333 1616 21

19

9

39 11

36

33

34

32

20

36

9

36

Figure 1: A Killer Sudoku Puzzle

Sudoku is a Japanese game since 1986. In Japanese,
”Sudoku” means ”single number” [3]. A Sudoku Prob-
lem is a problem to fill in a n*n boards with numbers
from 1-9. The filled board should have the first three
of following constrains satisfied [2]. A killer sudoku is
also called sumdoku, It differs from classical sudokus
since it doesn’t have pre-filled cells. Instead, its con-
straints are about the sum of numbers in cells (con-
straint 1-2 and 4). A set of such cells are named cage.

1. There is exactly one number in each cell.

2. Each number must appear exactly once in each
row / column / 3*3 block (a.k.a. nonet).

3. Some numbers are pre-filled and we need to con-
sider about them

4. The sum of pairwise distinct numbers in cells
of the same cage equals to that as labelled on
the cage (i.e. the label of the cage)

2 Encoding of Constraints
A SAT approach of a sudoku problem is to translate constraints into equi-satisfiable propositional for-
mulas in Conjunctive Normal Form (CNF) and obtain the result by interacting with a SAT solver, a
program to solve a satisfiability problem in propositional logic [2]. By introducing for each cell on
column i and row j and a possible number k a proposition pki,j , we can encode the constraints as follows
respectively:

1.
∧9

i=1

∧9
j=1

∧9
k1,k2=1 (¬p

k1
i,j ∨ ¬p

k2
i,j), k1 6= k2.

2.
∧
(¬pk1

i1,j1
∨ ¬pk2

i2,j2
), for two different cells at (i1, j1) and (i2, j2) in the same rows, or same

columns, or any 3*3 blocks (i.e. nonets), 1 ≤ k1, k2 ≤ 9.

3. set pki,j to True if a cell at (i, j) is labelled with k.



4. For each possible combination pos = {b0, b1, . . . , bn} ∈ POS regarding a cage C labelled s
(with its cells named c0, c1, . . . , cn ∈ C), where sum(bi) = s, we introduce a new proposition
xi for each pos and yi for each number bi.

(a) yi iff i was labelled on one of the cells in the cage.

(b) x iff every yi ∈ bi if true.

(c)
∨
x for each x corresponding to a possible combination pos ∈ POS

2.1 Implementation and Evaluation
This project employed PycoSAT as the SAT solver [1]. By interacting with its Python API, it took
less than one second to obtain a solution for any killer sudoku problem. In addition, the total time and
the solving time (of PicoSAT) were recorded and the average time for each sudoku corresponding to a
specified cage size is presented as in Table 1. It is clear that the more possibilities regarding a cage and
its label, the harder it is to solve. The main reason that the solving time decreases after 6 is that, when
the maximum cage size value is greater than 5, the amount of possible combinations decreases, making
the solving time decrease as a result.In addition, we generated a database for the purpose of evaluation.
The database consists of 1000 example sudokus 1 and its answers for a maximum cage size of 2 to 9
each. The database and sourcecode are available on the project page2.

Table 1: Evaluation Results using PicoSAT

Max. Cage Size 2 3 4 5 6 7 8 9
Possible Labels 15 19 21 21 19 15 9 1
Possible Combinations 36 84 127 127 87 54 9 1
Avg. No. Clauses(A.C.3) 1475 1555 1638 1630 1532 1406 1342 1317
Avg. Total No. Clauses 8907 9007 9090 9080 8984 8858 8794 8769
Avg Total Time (s) 0.2027 0.2049 0.2102 0.2140 0.2182 0.2158 0.2138 0.2142
Avg Solving Time (s) 0.0253 0.0264 0.0296 0.0335 0.0378 0.0364 0.0356 0.0359

3 Conclusion and Acknowledgement
This paper presents a case study using a SAT solver to solve killer sudoku problems by encoding arith-
metic constrains to propositional constraints. Both the database and the source code are opensource.
The authors would like to thank Prof. Frank van Harmelen for his guidance and inspiration.

References
[1] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation,

4:75–97, 2008.

[2] Inês Lynce and Joël Ouaknine. Sudoku as a SAT problem. In International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2006, Fort Lauderdale, Florida, USA, January 4-6, 2006,
2006.

[3] Tjark Weber. A SAT-based sudoku solver. In 12 th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, LPAR 2005, pages 11–15, 2005.

1The database made use of a free sudoku database at http://www.printable-sudoku-puzzles.com/wfiles/.
2https://uva-kr16.github.io/KilerSudoku/

http://www.printable-sudoku-puzzles.com/wfiles/
https://uva-kr16.github.io/KilerSudoku/

	Introduction
	Encoding of Constraints
	Implementation and Evaluation

	Conclusion and Acknowledgement

