A SAT Attack on Killer Sudokus

Shuai Wang Aashish Venkatesh

University of Amsterdam, The Netherlands

Abstract

Killer sudoku is a special class of sudoku where the sum of some adjacent cells is specified. This
case study presents the first attempt using a SAT solver for killer sudoku problems. More specifi-
cally, we introduce an encoding from arithmetic constraints to propositional constraints. A qualitative
evaluation is presented regarding different cage sizes. In addition, the first opensource killer sudoku
database is developed.

1 Introduction

Sudoku is a Japanese game since 1986. In Japanese,
”Sudoku” means “’single number” [3]]. A Sudoku Prob-
lem is a problem to fill in a n*n boards with numbers

33 16 21 33

from 1-9. The filled board should have the first three

of following constrains satisfied [2]]. A killer sudoku is
also called sumdoku, It differs from classical sudokus

since it doesn’t have pre-filled cells. Instead, its con- 36 32
straints are about the sum of numbers in cells (con-

30 19

straint 1-2 and 4). A set of such cells are named cage.

1. There is exactly one number in each cell.

2. Each number must appear exactly once in each
row / column / 3*3 block (a.k.a. nonet).

3. Some numbers are pre-filled and we need to con-

sider about them

4. The sum of pairwise distinct numbers in cells °
of the same cage equals to that as labelled on

the cage (i.e. the label of the cage)

Figure 1: A Killer Sudoku Puzzle
2 Encoding of Constraints

A SAT approach of a sudoku problem is to translate constraints into equi-satisfiable propositional for-
mulas in Conjunctive Normal Form (CNF) and obtain the result by interacting with a SAT solver, a
program to solve a satisfiability problem in propositional logic [2]. By introducing for each cell on
column i and row j and a possible number k a proposition pf’ ;» we can encode the constraints as follows
respectively:

9 9 9 k K
L. /\i:1 /\j:l /\kl,k2:1 (_'pi,lj v _'pi723‘)’ ki # ko.

2. A (ﬁpfll’jl v ﬁpfjﬁ), for two different cells at (i1, 71) and (i2, j2) in the same rows, or same
columns, or any 3*3 blocks (i.e. nonets), 1 < kq, ko < 9.

3. set pﬁj to True if a cell at (4, j) is labelled with k.




4. For each possible combination pos = {bg,b1,...,b,} € POS regarding a cage C labelled s
(with its cells named ¢y, c1, ..., ¢, € C), where sum(b;) = s, we introduce a new proposition
x; for each pos and y; for each number b;.

(a) y; iff < was labelled on one of the cells in the cage.
(b) xiff every y; € b; if true.

(c) V z for each x corresponding to a possible combination pos € POS

2.1 Implementation and Evaluation

This project employed PycoSAT as the SAT solver [[1]. By interacting with its Python API, it took
less than one second to obtain a solution for any killer sudoku problem. In addition, the total time and
the solving time (of PicoSAT) were recorded and the average time for each sudoku corresponding to a
specified cage size is presented as in Table[T] It is clear that the more possibilities regarding a cage and
its label, the harder it is to solve. The main reason that the solving time decreases after 6 is that, when
the maximum cage size value is greater than 5, the amount of possible combinations decreases, making
the solving time decrease as a result.In addition, we generated a database for the purpose of evaluation.
The database consists of 1000 example sudokus ['|and its answers for a maximum cage size of 2 to 9
each. The database and sourcecode are available on the project pag

Table 1: Evaluation Results using PicoSAT

Max. Cage Size 2 3 4 5 6 7 8 9
Possible Labels 15 19 21 21 19 15 9 1
Possible Combinations 36 84 127 127 87 54 9 1

Avg. No. Clauses(A.CE[) 1475 1555 1638 1630 1532 1406 1342 1317

Avg. Total No. Clauses 8907 9007 9090 9080 8984 8858 8794 8769

Avg Total Time (s) 0.2027 | 0.2049 | 0.2102 | 0.2140 | 0.2182 | 0.2158 | 0.2138 | 0.2142

Avg Solving Time (s) 0.0253 | 0.0264 | 0.0296 | 0.0335 | 0.0378 | 0.0364 | 0.0356 | 0.0359

3 Conclusion and Acknowledgement

This paper presents a case study using a SAT solver to solve killer sudoku problems by encoding arith-
metic constrains to propositional constraints. Both the database and the source code are opensource.
The authors would like to thank Prof. Frank van Harmelen for his guidance and inspiration.

References

[1] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation,
4:75-97, 2008.

[2] Inés Lynce and Jo€l Ouaknine. Sudoku as a SAT problem. In International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2006, Fort Lauderdale, Florida, USA, January 4-6, 2006,
2006.

[3] Tjark Weber. A SAT-based sudoku solver. In 12 th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, LPAR 2005, pages 11-15, 2005.

I The database made use of a free sudoku database at http://www.printable-sudoku-puzzles.com/wfiles/,
Zhttps://uva-krl6.github.io/KilerSudoku/


http://www.printable-sudoku-puzzles.com/wfiles/
https://uva-kr16.github.io/KilerSudoku/

	Introduction
	Encoding of Constraints
	Implementation and Evaluation

	Conclusion and Acknowledgement

