
UNIVERSITY OF AMSTERDAM

A SAT Attack on Killer Sudoku Problems*

Shuai Wang Aashish Venkatesh

September 22, 2016

Killer sudoku is a special class of sudoku where the sum of some adjacent cells is specified.
This case study presents the first attempt using a SAT solver for killer sudoku problems. More
specifically, we introduce an encoding from arithmetic constraints to propositional constraints. A
qualitative evaluation is presented regarding different cage sizes. In addition, the first opensource
killer sudoku database is developed.

1. SUDOKU PROBLEMS AS SAT PROBLEMS

2 9

3 1 9 6 5 2

8 4

9 5

5 2 3 6

7 2

4 7

8 2 5 1 7 3

5 8

Figure 0.1: An example sudoku puzzle

Sudoku is a Japanese game since 1986. In Japanese, ”Sudoku”
means ”single number” [3]. A Sudoku Problem is a problem
to fill in a n*n boards with numbers from 1-9. The filled board
should have the first three of following constrains satisfied [2].

1. There is exactly one number in each cell.

2. Each number must appear exactly once in each row /
column / 3*3 block (a.k.a. nonet).

3. Some numbers are pre-filled and we need to consider
about them

4. The sum of pairwise distinct numbers in cells of the
same cage equals to that as labelled on the cage (i.e.
the label of the cage)

A killer sudoku is also called Sumdoku, It differs from classi-
cal sudokus since it doesn’t have pre-filled cells. Instead, its
constraints are about the sum of numbers in cells (constraint
1-2 and 4). A set of such cells are named cage. We define the maximum allowed cage size as K . Sudoku
puzzles are hard problems. There are more than 6×1021 possible sudoku grids. Due to its large searching
space, a Naive backtracking algorithm is infeasible. A SAT approach of sudoku problem is to translated into
equi-satisfiable propositional formula. A general puzzle solbing process is as illustrated in Fig. 1.2. Based on
experience solving killer sudokus by hand, our hypothesis is as follows:

The bigger K is, the harder it is to solve.

*Project homepage: https://uva-kr16.github.io/KilerSudoku/.

1

https://uva-kr16.github.io/KilerSudoku/


Figure 1.2: General puzzle solving process using SAT solvers

7

10

30

3333 1616 21

19

9

39 11

36

33

34

32

20

36

9

36

7

10

30

3333 1616 21

19

9

39 11

36

33

34

32

20

36

9

36

1 2 3 4 5 6 7 8 9

9 8 5 1 7 3 2 6 4

7 6 4 8 9 2 5 3 1

8 5 1 2 3 4 9 7 6

2 3 7 9 6 1 4 5 8

6 4 9 5 8 7 3 1 2

4 7 8 6 2 5 1 9 3

5 1 6 3 4 9 8 2 7

3 9 2 7 1 8 6 4 5

Figure 1.1: A Killer Sudoku puzzle and its solution

.

2. EXPERIMENTAL SETUP

2.1. GENERATION OF KILLER SUDOKUS

This project is about evaluating the hardness of killer su-
dokus regarding the K value. We measure it in two ways:
the amount of clauses generated and the time taken for
solving. This experiment was based on evaluation of 1000
sudokus for each K value. The database of killer sudoku
was generated using a free (solved) sudoku database1.
The database had to be generated as there was no exist-
ing database grouped by the K value. Hence, to test the
hypothesis, killer sudokus with different K values were
generated. During the generation, K varied from 2 to 9
and at least three such cages were created in each killer su-
doku. And the remaining cages were randomly generated
of size 2 to K .

2.2. METRICS

Metrics used to analyse the experiment are average num-
ber of clauses (the total amount and only those corre-
sponding to arithematic constraints) for each K and av-
erage time taken to solve the sudoku by the SAT solver
as well as the total time. These entries were used to infer
about the hardness of the sudoku.

2.3. SAT SOLVER

The metric used in evaluating the experiment is based on
a large sample of sudokus. Thus, there is a need for a ro-
bust SAT solver. PicoSAT is a state of the art SAT solver [1],
written in C, is both deterministic and efficient. Pycosat
is a package that provides user-friendly Python bindings. And therefore PicoSAT was employed as the SAT
solver to solve killer sudokus using Pycosat.

1The database made use of a free sudoku database at http://www.printable-sudoku-puzzles.com/wfiles/.

2

http://www.printable-sudoku-puzzles.com/wfiles/


2.4. ENCODING OF CONSTRAINTS

A SAT approach of a sudoku problem is to translate constraints into equi-satisfiable propositional formulas
in Conjunctive Normal Form (CNF) and obtain the result by interacting with a SAT solver, a program to solve
a satisfiability problem in propositional logic [2]. By introducing for each cell on column i and row j and a
possible number k a proposition pk

i , j , we can encode the constraints as follows respectively:

1.
∧9

i=1

∧9
j=1

∧9
k1,k2=1 (¬pk1

i , j ∨¬pk2
i , j ), k1 6= k2.

2.
∧

(¬pk1
i1, j1

∨¬pk2
i2, j2

), for two different cells at (i1, j1) and (i2, j2) in the same rows, or same columns, or
any 3*3 blocks (i.e. nonets), 1 ≤ k1,k2 ≤ 9.

3. set pk
i , j to True if a cell at (i , j ) is labelled with k.

4. For each possible combination pos = {b0,b1, . . . ,bn} ∈ POS regarding a cage C labelled s (with its cells
named c0,c1, . . . ,cn ∈C ), where sum(bi ) = s, we introduce a new proposition xi for each pos and yi for
each number bi .

a) yi iff i was labelled on one of the cells in the cage.

b) x iff every yi ∈ bi if true.

c)
∨

x for each x corresponding to a possible combination pos ∈ POS

The naive approach used n3 total variables and in total O(n4) total clauses (approx. 13k clauses). By
introducing new propositional variables, we can better encode the constraint of at most one literal is satisfied
among a list of literals. The idea is, for a list of literals, if at most one of them is satisfied, it is either
the first, or one of the rest. While one of the rest could be defined similarly in a recursive fashion. Here
we introduce a new proposition representing the ’rest’. This way, we reduce the total clauses to O(n) by
introducing O(n) new propositions. This reduce the total amount of clauses to around 8k, including around
1500 clauses corresponding to the arithmetic clauses. These arithmetic clauses were generated using an
approach inspired by Tseytin transformation 2. For a cage, its K value and the sum uniquely determines a set
of possible combinations. For the numbers appear in every possible combinations, we take the disjunction of
the corresponding literals. For every number from 2 to 9, we introduce a proposition to represent the present
of the number in the cage, say y2 for the number 2. For each possible combination, a new proposition is
introduced as xi for the i th combination. Thus, xi implies yr ∧ ys ∧ . . .. To make sure at least one combination
is realised, we introduce the last clause x1, x2, . . .. All clauses can then be passed on to the solver to generate
solutions.

3. EVALUATION

3.1. EXPERIMENTAL RESULTS

This project employed PicoSAT as the SAT solver [1]. By interacting with its Python API, it took less than one
second to obtain a solution for any killer sudoku problem. In addition, the total time and the solving time
(of PicoSAT) were recorded and the average time for each sudoku corresponding to a specified cage size is
presented as in Table 3.1. We obtained good efficiency as proved by the evaluation results 3. It is clear that the
more possibilities regarding a cage and its label, the harder it is to solve. We completed 5 runs of evaluation
and took the average. The table consisting of the raw data are attached in the Appendix A.

3.2. INTERPRETATION

The experimental results is against our hypothesis. The main reason that the solving time decreases after 6 is
that, when the K value is greater than 5, the amount of possible combinations decreases, making the solving
time decrease as a result. This contradiction indicates that there is a difference between human reasoning

2https://en.wikipedia.org/wiki/Tseytin_transformation
3 PC specification: Intel Core i-3-3120M CPU × 4, 6 GB memory

3

https://en.wikipedia.org/wiki/Tseytin_transformation


Table 3.1: Evaluation Results using PicoSAT

Max. Cage Size (K -value) 2 3 4 5 6 7 8 9
Possible Labels 15 19 21 21 19 15 9 1
Possible Combinations 36 84 127 127 87 54 9 1
Avg. No. Clauses(A.C.4) 1475 1555 1638 1630 1532 1406 1342 1317
Avg. Total No. Clauses 8907 9007 9090 9080 8984 8858 8794 8769
Avg Total Time (s) 0.2027 0.2049 0.2102 0.2140 0.2182 0.2158 0.2138 0.2142
Avg Solving Time (s) 0.0253 0.0264 0.0296 0.0335 0.0378 0.0364 0.0356 0.0359

and machine reasoning. One reason is that we human are not good at calculating big numbers. For example,
we may find it hard to find possible values for cells of a cage of size 7 and labelled 35 but easier to find the
values for a cage of size 3 and labelled 14. In fact, the first case has only 4 possible combinations numbers
while the latter has 8. Another possible reason is that we lack of enough experience solving killer sudokus by
hand before making the hypothesis. In the result, it was noticed that although few possible combinations
were possible for k value of 8 and 9, the total time is not as little. This is possibly due to the presents of cages
of other size, for example, cages of size 4, 5 or 6.

Figure 3.1: Bar chart of Avg Solving time taken by the PicoSAT for different K

4. CONCLUSION AND ACKNOWLEDGEMENT

This report presents a case study using a SAT solver to solve killer sudoku problems by encoding arithmetic
and logical constrains to propositional constraints. The database and sourcecode of this project are available
on the project page5. The authors would like to thank Prof. Frank van Harmelen for his guidance and
inspiration. This work is going to be presented in the Colloquium on Combinatorics to take place at Paderborn
University, Germany 6.

REFERENCES

[1] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4:75–97,
2008.

5https://uva-kr16.github.io/KilerSudoku/
6http://www.kolkom.de/

4

https://uva-kr16.github.io/KilerSudoku/
http://www.kolkom.de/


[2] Inês Lynce and Joël Ouaknine. Sudoku as a SAT problem. In International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2006, Fort Lauderdale, Florida, USA, January 4-6, 2006, 2006.

[3] Tjark Weber. A SAT-based sudoku solver. In 12 th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR 2005, pages 11–15, 2005.

A. PICOSAT OBSERVATION DATA

The table is the observational data from PicoSAT solver after running the 1000 killer sudokus for each K for
five rounds. In the table, K = maximum size of the cage, T.T = Total time taken by the system including I/O in
seconds, S.T = Total time taken by the system to solve the sudoku in seconds.

Table A.1: PicoSAT observation over five rounds

Round 1 Round 2 Round 3 Round 4 Round 5
K T.T(s) S.T(s) T.T (s) S.T(s) T.T (s) S.T(s) T.T (s) S.T(s) T.T (s) S.T(s)
2 0.2047 0.0258 0.2016 0.0253 0.2029 0.0252 0.2011 0.0252 0.2033 0.0252
3 0.2071 0.0270 0.2054 0.0262 0.2051 0.0263 0.2040 0.0263 0.2031 0.0261
4 0.2102 0.0297 0.2107 0.0296 0.2110 0.0297 0.2100 0.296 0.2089 0.0293
5 0.2136 0.0336 0.2143 0.0334 0.2137 0.0334 0.2157 0.0335 0.2128 0.0335
6 0.2184 0.0378 0.2181 0.0377 0.2187 0.0378 0.2187 0.0377 0.2172 0.380
7 0.2157 0.0364 0.2165 0.0363 0.2167 0.0362 0.2155 0.0364 0.2145 0.0365
8 0.2138 0.0358 0.2138 0.0356 0.2133 0.0358 0.2146 0.0355 0.2133 0.0355
9 0.2146 0.0358 0.2152 0.0358 0.2149 0.0359 0.2121 0.0360 0.2141 0.0358

B. POSSIBLE COMBINATIONS OF NUMBERS FOR DIFFERENT CAGE SIZE AND SUMS

Table B.1 to Table B.7 shows all the possible combinations of cages of size 2 to 8. For cages of size 9, all
numbers from 1 to 9 must appear. Thus, there is only one possible case.

Table B.1: Possible combinations for cages of size 2

3 12
4 13
5 14 23
6 15 24
7 16 25 34
8 17 26 35
9 18 27 36 45
10 19 28 37 46
11 29 38 47 56
12 39 48 57
13 49 58 67
14 59 68
15 69 78
16 79
17 89

5



Table B.2: Possible combinations for cages of size 3

6 123
7 124
8 125 134
9 126 135 234
10 127 136 145 235
11 128 137 146 236 245
12 129 138 147 156 237 246 345
13 139 148 157 238 247 256 346
14 149 158 167 239 248 257 347 356
15 159 168 249 258 267 348 357 456
16 169 178 259 268 349 358 367 457
17 179 269 278 359 368 458 467
18 189 279 369 378 459 468 567
19 289 379 469 478 568
20 389 479 569 578
21 489 579 678
22 589 679
23 689
24 789

Table B.3: Possible combinations for cages of size 4

10 1234
11 1235
12 1236 1245
13 1237 1246 1345
14 1238 1247 1256 1346 2345
15 1239 1248 1257 1347 1356 2346
16 1249 1258 1267 1348 1357 1456 2347 2356
17 1259 1268 1349 1358 1367 1457 2348 2357 2456
18 1269 1278 1359 1368 1458 1467 2349 2358 2367 2457 3456
19 1279 1369 1378 1459 1468 1567 2359 2368 2458 2467 3457
20 1289 1379 1469 1478 1568 2369 2378 2459 2468 2567 3458 3467
21 1389 1479 1569 1578 2379 2469 2478 2568 3459 3468 3567
22 1489 1579 1678 2389 2479 2569 2578 3469 3478 3568 4567
23 1589 1679 2489 2579 2678 3479 3569 3578 4568
24 1689 2589 2679 3489 3579 3678 4569 4578
25 1789 2689 3589 3679 4579 4678
26 2789 3689 4589 4679 5678
27 3789 4689 5679
28 4789 5689
29 5789
30 6789

6



Table B.4: Possible combinations for cages of size 5

15 12345
16 12346
17 12347 12356
18 12348 12357 12456
19 12349 12358 12367 12457 13456
20 12359 12368 12458 12467 13457 23456
21 12369 12378 12459 12468 12567 13458 13467 23457
22 12379 12469 12478 12568 13459 13468 13567 23458 23467
23 12389 12479 12569 12578 13469 13478 13568 14567 23459 23468 23567
24 12489 12579 12678 13479 13569 13578 14568 23469 23478 23568 24567
25 12589 12679 13489 13579 13678 14569 14578 23479 23569 23578 24568 34567
26 12689 13589 13679 14579 14678 23489 23579 23678 24569 24578 34568
27 12789 13689 14589 14679 15678 23589 23679 24579 24678 34569 34578
28 13789 14689 15679 23689 24589 24679 25678 34579 34678
29 14789 15689 23789 24689 25679 34589 34679 35678
30 15789 24789 25689 34689 35679 45678
31 16789 25789 34789 35689 45679
32 26789 35789 45689
33 36789 45789
34 46789
35 56789

Table B.5: Possible combinations for cages of size 6

21 123456
22 123457
23 123458 123467
24 123459 123468 123567
25 123469 123478 123568 124567
26 123479 123569 123578 124568 134567
27 123489 123579 123678 124569 124578 134568 234567
28 123589 123679 124579 124678 134569 134578 234568
29 123689 124589 124679 125678 134579 134678 234569 234578
30 123789 124689 125679 134589 134679 135678 234579 234678
31 124789 125689 134689 135679 145678 234589 234679 235678
32 125789 134789 135689 145679 234689 235679 245678
33 126789 135789 145689 234789 235689 245679 345678
34 136789 145789 235789 245689 345679
35 146789 236789 245789 345689
36 156789 246789 345789
37 256789 346789
38 356789
39 456789

7



Table B.6: Possible combinations for cages of size 7

28 1234567
29 1234568
30 1234569 1234578
31 1234579 1234678
32 1234589 1234679 1235678
33 1234689 1235679 1245678
34 1234789 1235689 1245679 1345678
35 1235789 1245689 1345679 2345678
36 1236789 1245789 1345689 2345679
37 1246789 1345789 2345689
38 1256789 1346789 2345789
39 1356789 2346789
40 1456789 2356789
41 2456789
42 3456789

Table B.7: Possible combinations for cages of size 8

36 12345678
37 12345679
38 12345689
39 12345789
40 12346789
41 12356789
42 12456789
43 13456789
44 23456789

8


	Sudoku Problems as SAT Problems
	Experimental Setup
	Generation of Killer Sudokus
	Metrics
	SAT Solver
	Encoding of Constraints

	Evaluation
	Experimental Results
	Interpretation

	Conclusion and Acknowledgement
	PicoSAT Observation Data
	Possible Combinations of Numbers for Different Cage Size and Sums

