A SAT Attack on Killer Sudoku Problems*

Shuai Wang Aashish Venkatesh

September 22, 2016

Killer sudoku is a special class of sudoku where the sum of some adjacent cells is specified. This case study presents the first attempt using a SAT solver for killer sudoku problems. More specifically, we introduce an encoding from arithmetic constraints to propositional constraints. A qualitative evaluation is presented regarding different cage sizes. In addition, the first opensource killer sudoku database is developed.

1. Sudoku Problems as Sat Problems

Sudoku is a Japanese game since 1986. In Japanese, "Sudoku" means "single number" [3]. A Sudoku Problem is a problem to fill in a n*n boards with numbers from 1-9. The filled board should have the first three of following constrains satisfied [2].

1. There is exactly one number in each cell.
2. Each number must appear exactly once in each row / column / 3*3 block (a.k.a. nonet).
3. Some numbers are pre-filled and we need to consider about them
4. The sum of pairwise distinct numbers in cells of the same cage equals to that as labelled on the cage (i.e. the label of the cage)

A killer sudoku is also called Sumdoku, It differs from classical sudokus since it doesn't have pre-filled cells. Instead, its constraints are about the sum of numbers in cells (constraint

Figure 0.1: An example sudoku puzzle $1-2$ and 4). A set of such cells are named cage. We define the maximum allowed cage size as K. Sudoku puzzles are hard problems. There are more than 6×10^{21} possible sudoku grids. Due to its large searching space, a Naive backtracking algorithm is infeasible. A SAT approach of sudoku problem is to translated into equi-satisfiable propositional formula. A general puzzle solbing process is as illustrated in Fig. 1.2. Based on experience solving killer sudokus by hand, our hypothesis is as follows:

The bigger K is, the harder it is to solve.

[^0]Puzzle-Solving Process

Figure 1.2: General puzzle solving process using SAT solvers

2. EXPERIMENTAL SETUP

2.1. Generation of Killer Sudokus

This project is about evaluating the hardness of killer sudokus regarding the K value. We measure it in two ways: the amount of clauses generated and the time taken for solving. This experiment was based on evaluation of 1000 sudokus for each K value. The database of killer sudoku was generated using a free (solved) sudoku database ${ }^{1}$. The database had to be generated as there was no existing database grouped by the K value. Hence, to test the hypothesis, killer sudokus with different K values were generated. During the generation, K varied from 2 to 9 and at least three such cages were created in each killer sudoku. And the remaining cages were randomly generated of size 2 to K.

2.2. Metrics

Metrics used to analyse the experiment are average number of clauses (the total amount and only those corresponding to arithematic constraints) for each K and average time taken to solve the sudoku by the SAT solver as well as the total time. These entries were used to infer about the hardness of the sudoku.

2.3. SAT SOLVER

The metric used in evaluating the experiment is based on a large sample of sudokus. Thus, there is a need for a robust SAT solver. PicoSAT is a state of the art SAT solver [1], written in C, is both deterministic and efficient. Pycosat is a package that provides user-friendly Python bindings. And therefore PicoSAT was employed as the SAT solver to solve killer sudokus using Pycosat.

[^1]
2.4. Encoding of Constraints

A SAT approach of a sudoku problem is to translate constraints into equi-satisfiable propositional formulas in Conjunctive Normal Form (CNF) and obtain the result by interacting with a SAT solver, a program to solve a satisfiability problem in propositional logic [2]. By introducing for each cell on column i and row j and a possible number k a proposition $p_{i, j}^{k}$, we can encode the constraints as follows respectively:

1. $\wedge_{i=1}^{9} \wedge_{j=1}^{9} \wedge_{k_{1}, k_{2}=1}^{9}\left(\neg p_{i, j}^{k_{1}} \vee \neg p_{i, j}^{k_{2}}\right), k_{1} \neq k_{2}$.
2. $\wedge\left(\neg p_{1,1}^{k_{1}, j_{1}} \vee \neg p_{i_{2}, j_{2}}^{k_{2}}\right.$), for two different cells at $\left(i_{1}, j_{1}\right)$ and ($\left.i_{2}, j_{2}\right)$ in the same rows, or same columns, or any 3*3 blocks (i.e. nonets), $1 \leq k_{1}, k_{2} \leq 9$.
3. set $p_{i, j}^{k}$ to True if a cell at (i, j) is labelled with k.
4. For each possible combination $\operatorname{pos}=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\} \in P O S$ regarding a cage C labelled s (with its cells named $c_{0}, c_{1}, \ldots, c_{n} \in C$), where $\operatorname{sum}\left(b_{i}\right)=s$, we introduce a new proposition x_{i} for each pos and y_{i} for each number b_{i}.
a) y_{i} iff i was labelled on one of the cells in the cage.
b) x iff every $y_{i} \in b_{i}$ if true.
c) $\bigvee x$ for each x corresponding to a possible combination $\operatorname{pos} \in P O S$

The naive approach used n^{3} total variables and in total $O\left(n^{4}\right)$ total clauses (approx. 13k clauses). By introducing new propositional variables, we can better encode the constraint of at most one literal is satisfied among a list of literals. The idea is, for a list of literals, if at most one of them is satisfied, it is either the first, or one of the rest. While one of the rest could be defined similarly in a recursive fashion. Here we introduce a new proposition representing the 'rest'. This way, we reduce the total clauses to $O(n)$ by introducing $O(n)$ new propositions. This reduce the total amount of clauses to around 8 k , including around 1500 clauses corresponding to the arithmetic clauses. These arithmetic clauses were generated using an approach inspired by Tseytin transformation ${ }^{2}$. For a cage, its K value and the sum uniquely determines a set of possible combinations. For the numbers appear in every possible combinations, we take the disjunction of the corresponding literals. For every number from 2 to 9 , we introduce a proposition to represent the present of the number in the cage, say y_{2} for the number 2 . For each possible combination, a new proposition is introduced as x_{i} for the i th combination. Thus, x_{i} implies $y_{r} \wedge y_{s} \wedge \ldots$ To make sure at least one combination is realised, we introduce the last clause x_{1}, x_{2}, \ldots. All clauses can then be passed on to the solver to generate solutions.

3. Evaluation

3.1. Experimental Results

This project employed PicoSAT as the SAT solver [1]. By interacting with its Python API, it took less than one second to obtain a solution for any killer sudoku problem. In addition, the total time and the solving time (of PicoSAT) were recorded and the average time for each sudoku corresponding to a specified cage size is presented as in Table 3.1. We obtained good efficiency as proved by the evaluation results ${ }^{3}$. It is clear that the more possibilities regarding a cage and its label, the harder it is to solve. We completed 5 runs of evaluation and took the average. The table consisting of the raw data are attached in the Appendix A.

3.2. Interpretation

The experimental results is against our hypothesis. The main reason that the solving time decreases after 6 is that, when the K value is greater than 5 , the amount of possible combinations decreases, making the solving time decrease as a result. This contradiction indicates that there is a difference between human reasoning

[^2]Table 3.1: Evaluation Results using PicoSAT

Max. Cage Size (K-value)	2	3	4	5	6	7	8	9
Possible Labels	15	19	21	21	19	15	9	1
Possible Combinations	36	84	127	127	87	54	9	1
Avg. No. Clauses(A.C. ${ }^{4}$)	1475	1555	1638	1630	1532	1406	1342	1317
Avg. Total No. Clauses	8907	9007	9090	9080	8984	8858	8794	8769
Avg Total Time (s)	0.2027	0.2049	0.2102	0.2140	0.2182	0.2158	0.2138	0.2142
Avg Solving Time (s)	0.0253	0.0264	0.0296	0.0335	0.0378	0.0364	0.0356	0.0359

and machine reasoning. One reason is that we human are not good at calculating big numbers. For example, we may find it hard to find possible values for cells of a cage of size 7 and labelled 35 but easier to find the values for a cage of size 3 and labelled 14. In fact, the first case has only 4 possible combinations numbers while the latter has 8 . Another possible reason is that we lack of enough experience solving killer sudokus by hand before making the hypothesis. In the result, it was noticed that although few possible combinations were possible for k value of 8 and 9 , the total time is not as little. This is possibly due to the presents of cages of other size, for example, cages of size 4,5 or 6 .

Figure 3.1: Bar chart of Avg Solving time taken by the PicoSAT for different K

4. Conclusion and Acknowledgement

This report presents a case study using a SAT solver to solve killer sudoku problems by encoding arithmetic and logical constrains to propositional constraints. The database and sourcecode of this project are available on the project page ${ }^{5}$. The authors would like to thank Prof. Frank van Harmelen for his guidance and inspiration. This work is going to be presented in the Colloquium on Combinatorics to take place at Paderborn University, Germany ${ }^{6}$.

REFERENCES

[1] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4:75-97, 2008.

[^3][2] Inês Lynce and Joël Ouaknine. Sudoku as a SAT problem. In International Symposium on Artificial Intelligence and Mathematics, ISAIM 2006, Fort Lauderdale, Florida, USA, January 4-6, 2006, 2006.
[3] Tjark Weber. A SAT-based sudoku solver. In 12 th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2005, pages 11-15, 2005.

A. PicoSAT Observation Data

The table is the observational data from PicoSAT solver after running the 1000 killer sudokus for each K for five rounds. In the table, $K=$ maximum size of the cage, T.T = Total time taken by the system including I/O in seconds, S.T = Total time taken by the system to solve the sudoku in seconds.

Table A.1: PicoSAT observation over five rounds

	Round 1		Round 2		Round 3		Round 4		Round 5	
K	T.T(s)	S.T(s)	T.T (s)	S.T(s)						
2	0.2047	0.0258	0.2016	0.0253	0.2029	0.0252	0.2011	0.0252	0.2033	0.0252
3	0.2071	0.0270	0.2054	0.0262	0.2051	0.0263	0.2040	0.0263	0.2031	0.0261
4	0.2102	0.0297	0.2107	0.0296	0.2110	0.0297	0.2100	0.296	0.2089	0.0293
5	0.2136	0.0336	0.2143	0.0334	0.2137	0.0334	0.2157	0.0335	0.2128	0.0335
6	0.2184	0.0378	0.2181	0.0377	0.2187	0.0378	0.2187	0.0377	0.2172	0.380
7	0.2157	0.0364	0.2165	0.0363	0.2167	0.0362	0.2155	0.0364	0.2145	0.0365
8	0.2138	0.0358	0.2138	0.0356	0.2133	0.0358	0.2146	0.0355	0.2133	0.0355
9	0.2146	0.0358	0.2152	0.0358	0.2149	0.0359	0.2121	0.0360	0.2141	0.0358

B. Possible Combinations of Numbers for Different Cage Size and Sums

Table B. 1 to Table B. 7 shows all the possible combinations of cages of size 2 to 8 . For cages of size 9 , all numbers from 1 to 9 must appear. Thus, there is only one possible case.

Table B.1: Possible combinations for cages of size 2

3	12
4	13
5	1423
6	1524
7	162534
8	172635
9	18273645
10	19283746
11	29384756
12	394857
13	495867
14	5968
15	6978
16	79
17	89

Table B.2: Possible combinations for cages of size 3

6	123
7	124
8	125134
9	$126135 \quad 234$
10	127136145235
11	128137146236245
12	129138147156237246345
13	139148157238247256346
14	149158167239248257347356
15	159168249258267348357456
16	169178259268349358367457
17	179269278359368458467
18	189279369378459468567
19	289379469478568
20	389479569578
21	489579678
22	589679
23	689
24	789

Table B.3: Possible combinations for cages of size 4

10	1234
11	1235
12	12361245
13	123712461345
14	12381247125613462345
15	123912481257134713562346
16	12491258126713481357145623472356
17	125912681349135813671457234823572456
18	12691278135913681458146723492358236724573456
19	12791369137814591468156723592368245824673457
20	128913791469147815682369237824592468256734583467
21	13891479156915782379246924782568345934683567
22	14891579167823892479256925783469347835684567
23	158916792489257926783479356935784568
24	16892589267934893579367845694578
25	178926893589367945794678
26	27893689458946795678
27	378946895679
28	47895689
29	5789
30	6789

Table B.4: Possible combinations for cages of size 5

15	12345
16	12346
17	1234712356
18	123481235712456
19	1234912358123671245713456
20	123591236812458124671345723456
21	1236912378124591246812567134581346723457
22	123791246912478125681345913468135672345823467
23	1238912479125691257813469134781356814567234592346823567
24	1248912579126781347913569135781456823469234782356824567
25	125891267913489135791367814569145782347923569235782456834567
26	1268913589136791457914678234892357923678245692457834568
27	1278913689145891467915678235892367924579246783456934578
28	137891468915679236892458924679256783457934678
29	1478915689237892468925679345893467935678
30	157892478925689346893567945678
31	1678925789347893568945679
32	267893578945689
33	3678945789
34	46789
35	56789

Table B.5: Possible combinations for cages of size 6

21	123456
22	123457
23	$123458 \quad 123467$
24	$123459123468 \quad 123567$
25	$123469123478 \quad 123568124567$
26	123479123569123578124568134567
27	123489123579123678124569124578134568234567
28	123589123679124579124678134569134578234568
29	123689124589124679125678134579134678234569234578
30	123789124689125679134589134679135678234579234678
31	124789125689134689135679145678234589234679235678
32	125789134789135689145679234689235679245678
33	126789135789145689234789235689245679345678
34	136789145789235789245689345679
35	146789236789245789345689
36	156789246789345789
37	256789346789
38	356789
39	456789

Table B.6: Possible combinations for cages of size 7

28	1234567
29	1234568
30	12345691234578
31	12345791234678
32	123458912346791235678
33	123468912356791245678
34	1234789123568912456791345678
35	1235789124568913456792345678
36	1236789124578913456892345679
37	124678913457892345689
38	125678913467892345789
39	13567892346789
40	14567892356789
41	2456789
42	3456789

Table B.7: Possible combinations for cages of size 8

36	12345678
37	12345679
38	12345689
39	12345789
40	12346789
41	12356789
42	12456789
43	13456789
44	23456789

[^0]: *Project homepage: https://uva-kr16.github.io/KilerSudoku/.

[^1]: ${ }^{1}$ The database made use of a free sudoku database at http://www.printable-sudoku-puzzles.com/wfiles/.

[^2]: ${ }^{2}$ https://en.wikipedia.org/wiki/Tseytin_transformation
 ${ }^{3} \mathrm{PC}$ specification: Intel Core i-3-3120M CPU $\times 4,6 \mathrm{~GB}$ memory

[^3]: ${ }^{5}$ https://uva-kr16.github.io/KilerSudoku/
 ${ }^{6}$ http://www.kolkom.de/

